1. The Kidney reabsorbs HCO3- (in the Proximal Convoluted Tubule)

(Image credit: Dr. McLaughlin May 4th 2012 lecture)

4. An HCO3/Na+ symporter reabsorbs both HCO3- and Na+ from the ICF into the

peritubular capillary (back into the ECF)

3. In the cell, an intracellular Carbonic anhydrase converts CO2 and H2O back into HCO3- and H+
-The H+ is re-secreted back into the lumen by NHE3 to facilitate Na+ reabsorption

Type 2 Renal Tubular Acidosis:

- Metabolic acidosis due to the failure to reabsorb HCO3- in the PCT
- Can be due to <u>dysfunctional NHE3-antiporters</u>, CA, or Na/HCO3-symporters. Results in a lower threshold for proximal HCO3- reabsorption (PCT can maximally reabsorb less HCO3-)
- Results in a high HCO3- fractional excretion (FE_{HCO3} > 15%): <u>HCO3-wasting</u>
- RTA type 2 can be isolated, or as part of Fanconi's syndrome (reduced PCT reabsorption of glucose, amino acids, uric acid, and phosphate, as well as bicarb)

1. Na+/H+ exchanger (NHE3):

- -Found only in the PCT
- -Reabsorbs 1 Na+ while secreting 1 H+ into tubule
- -This is how HCO3- reabsorption is linked to Na+ reabsorption. HCO3- wasting (i.e. in vomiting) also means Na+ will be wasted, \uparrow urine [Na+]

Angiotensin II

Stimulates NHE3 directly, to absorb more Na+ and water proximally

ICF pH:

Lower ICF pH = ↑

NHE3 activity (pump more H+ out of cell)

2. The secreted H+ binds to the HCO3- that was filtered into the tubule; an <u>extracellular Carbonic</u>

Anhydrase (CA) converts them into water and CO2.

→ As a gas, CO2 easily diffuses back into the cell.

2. The Kidney secretes H+ as NaH_2PO_4 and NH_4Cl (and generates HCO3- for the ECF)

(Image credit: Dr. McLaughlin May 4th 2012 lecture)

Rationale:

→ Metabolism in the body is constantly producing excess H+, so these H+ need to be excreted to prevent acidosis.

Acidosis can arise when this HCO3- regeneration/ reabsorption process fails! (Indirect loss of HCO3-):

 \rightarrow Occurs when H+ is not secreted as H₂PO₄, thus no HCO3- is reabsorbed.

→ The H+ secreting capacity of this mechanism cannot increase! It's limited by the amt HPO₄²⁻ originally filtered! → Another process is needed to ramp up H+ secretion in case the body produces excess H+

2. The Kidney secretes H+ as NaH₂PO₄ and NH₄Cl (and generates HCO3- for the ECF)

(Image credit: Dr. McLaughlin May 4th 2012 lecture)

Rationale:

→ Metabolism in the body is constantly producing excess H+, so these H+ need to be excreted to prevent acidosis.

1. PCT cells contain glutaminase (activated by low pH)

 \rightarrow During ECF acidosis, more CO2 is delivered to the PCT cell, and converted into HCO3- and H+. The HCO3- is pumped out, the H+ remains to \downarrow intracellular pH, activating glutaminase.

2. Glutaminase breakdown of 1 glutamine produces 1 **HCO3-**, which is reabsored to help counter ECF acidosis.

- **3.** The glutaminase breakdown of glutamine also produces an **NH4+**, which is pumped into the tubule via NHE3
- Since it is charged, NH4+ cannot diffuse back into cells in its own; it traverses the length of the tubule until the LoH.

- **5.** In the collecting duct, α-intercalated cells have a **proton-pump** on their apical membrane, pumping excess intracellular H+ into the tubule
- ECF H+ are brought to the CCD cells by CO2, coverted into H+ & HCO3- by Carbonic anhydrase.
- W/out NH3: H+ secreted w/ Cl-: very acidic (bad)!
- With NH3: acid is secreted as NH4+Cl-, much less dangerous to tubule.
- Secreting acids as NH4+ allows for fine-tuning of H+ secretion with virtually unlimited capacity.

2. The Kidney secretes H+ as NaH₂PO₄ and $\underline{NH_4Cl}$ (and generates HCO3- for the ECF)

(Image credit: Dr. McLaughlin May 4th 2012 lecture)

3 requirements for acid to be secreted as NH4+:

1. A functional proton-pump on the apical membrane of the Alpha-intercalated cell

→If this H+ pump fails, **Type 1 RTA**!

2. Negative luminal charge, facilitating H+ export down its charge gradient.

→ Negative luminal charge is created by a functional principal cell (Reabsorbing Na+ makes lumen relatively -ve)
→ If principal cells fail (insensitive to aldosterone, etc) → lumen less negative, less H+ secreted → H+ builds up in ECF (acidosis) – Type 4 RTA

3. NH3 in the lumen

- → A supply of NH3 is essential to bind to H+ and get rid of it as NH4+
- →No NH3 can be due to 1) bad kidney damage to PCT, to glomeruli (↓ GFR), etc,
 2) malnourished; no glutamine in diet.

High K+ secretion (↓ TTKG)

(Less H+ in tubule to counterbalance its negative charges, drawing out more K+)

<u>Low</u> K+ secretion (↑ TTKG)

(b/c of principal cell failure, for many reasons: less K+ channels in membrane, less Na+ reabsorbed, etc)